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LINEAR AND NONLINEAR ELECTRON CYCLOTRON INTERACTION

IN OPEN RESONATORS

I. INTRODUCTION

One of the most recently developed devices for the generation of

coherent radiation in the millimeter and centimeter range is the gyrotron

(or, electron cyclotron maser). In this device, radiation power is pro-

duced by the interaction of the TE fields of the cavity with an electron beam

which propagates and gyrates along an external static magnetic field. This

interaction has been studied extensively, 1-18 both theoretically and experi-

mentally, with impressive results, such as a 22% efficiency of conversion of

beam kinetic power to radiation at a 2 mm 'iavelength with 22 kW CW output

power. Substantial improvements are possible if axial nonuniformities are

introduced in the form of gradients either in the oscillator cross-section, 19,20

or in the external magnetic field. 2 1 2 3

The frequency of the gyrotron is determined by the relativistic gyro-

frequency of the electrons in the external magnetic field. For efficient

operation, this gyrofrequency, Doppler-shifted in the electron beam rest

frame, must be in close synchronism with the eigenfrequency of the cavity.

However, since the size of the cavity cannot be made arbitrarily small, a

large value of the gyrofrequency may result in synchronism with more than

24-28one of the cavity eigenfrequencies. Although preliminary investigations

have not been conclusive, it is expected that multi-mode effects may prove a

problem for wavelengths less than ,,l mm.

To avoid such potential limitations, it is proposed that the gyrotron

cavity be replaced by an open quasi-optical resonator, Fig. 1, formed by two

mirrors of approriate shape. Taking the z-axis as the axis of the radiation,

the fields can be shown to be derivable from the usual vector potential

Manuscript submitted March 10, 1981.
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Fig. 1 - Schematic representation of the quasi-optical resonator and electron beam configuration.
The diffracted fields are contained by the two mirrors, one or both of which may be partially trans-
mitting. The individual electrons of the beam execute, to zero order, a helical motion in the exter-
nal magnetic field Bo .
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- 2A(rz) sin xkz + c(rz) cos(wt) + ey sin(wt)

(1)

+ a [A cos(kz + L)] [x cos(wt) + cy sin(wt)1.z

where w is the radiation frequency, k = w/c is the dominant term of the

wavenumber, c(r,z) = kr2/2R + tan- (z/Zo ) is the spatially dependent phase,

A(r,z) = A (r /r ) exp (-r2/r2 ) is the position dependent amplitude for

the fundamental mode, c is the ellipticity of the radiation, r = (x
2 

+ y2)

is the transverse coordinate, rs(z) = (1 + z2/z) is the spot size at

z with ro its minimum value at z=O, R(z) = z(l + z
2/z2 ) is the radius of

0 0

curvature of the wave front at z, zo = 7rr/X is the Rayleigh length, and
0

X = 2fr/k is the wavelength. The diffraction angle of the fundamental

mode is 0d = X/7r 0. The diffraction angle of the higher order modes is

larger. Therefore, if the radius of the mirrors is somewhat larger than

rs, most of the energy of the fundamental mode will be intercepted, re-

sulting in a high value of Q. The higher order modes on the other hand

will suffer from diffraction losses, their Q's will be small, and there-

fore these modes will not be excited. Thus the introduction of open

resonators provides an effective natural means for transverse mode selec-

tion.

This paper is intended as a preliminary but comprehensive analysis

of the electron cyclotron interaction with the diffracted fields of

Eq. (1). The limit we have considered throughout the paper is that of

an electron beam propagating along the radiation axis.29 We have assumed

that the transverse extent of the beam is small compared to the radiation

spot size rs, therefore the action of the field on the beam electrons is

that of a plane wave. In this limit we have developed the linear theory



(Sec. II) and the nonlinear theory (Sec. III) of the interaction in a

bounded system (oscillator). Various issues pertaining to the basic

theory are discussed in Sec. IV, along with the presentation of numerical

examples.

In Section 11 the linear dispersion relation is obtained for an

oscillator. For the sake of generality, an arbitrary electron beam dis-

tribution is assumed. All forward and backward components of the field

perturbation are kept and the value of the refractive index n = kc/w is

left unspecified in the bulk of the analysis in this Section. Specializing

to the case of a monoenergetic beam, affected only by the forward wave, 3

yields a compact result and reproduces the expressions for the gyrotron

in the cut-off frame, when n - 0. For luminous waves, n ~- 1, the gain

curve has two interesting features, viz. it possesses even symmetry about

the frequency of synchronism and can lead to instability even at exact

synchronism, provided that the transverse beam velocity satisfies a certain

inequality.

The nonlinear theory is developed in Section III for a constant

amplitude wave. The equations of motion for the electrons are expressed

using the axial coordinate z as the independent Lagrangian variable.

These equations are interrelated by four invariants. Two of these in-

variants relate the transverse displacement to the velocity, while the

other two relate the velocity components. These invariants reproduce

earlier results when n -0 or n > 1. A transformation to slowly varying

variables eliminates an additional variable and results in a single

integrable equation. The phase space plots are studied and distinction

between closed and open orbits is made. A condition for complete electron

4



kinetic energy depletion is identified. The nonlinear efficiency is

found to depend on only four combinations of the field and electron beam

parameters and is conveniently presented in contour plots.

Finally, certain aspects related to the applicability of our analysis

are discussed in Section IV. It is shown that the symmetry of the gain

spectrum can be used to relax the temperature requirements. The interaction

is also shown to have inherent abilities for axial mode selection. In our

example of a gyrotron type operation we obtained a 13.7% efficiency at

A = 2 mm with a 61 kW output power. The potential application of this

interaction as a free-electron laser is discussed and a scheme for

efficiency enhancement is proposed. By utilizing a two-oscillator con-

figuration, an efficiency n = 35% is obtained, while estimates predict

efficiencies can reach 60%.

The cyclotron interaction of electrons with luminous waves has been

the subject of two recent investigations. 31'32  In the first paper the

dispersion relation was obtained and analyzed for waves with arbitrary

values of n = kcli) in the limit of vanishingi axial beam velocity. In the

second paper the stability was investigated in terms of particle energy loss,

obtained from an expansion of the equations of motion in the radiation field

amplitude. Both these analyses assume a uniform medium of infinite extend in

z and use the time as the independent coordinate. Accordingly, their results

differ from ours, since in the present work the axial position z is used as

the independent variable and the presence of the oscillator boundaries is

important.

5



II. LINEAR THEORY

The fields of the oscillator are given in terms of the vector po-

tential a by the simplification of Eq. (1),

Ao sin(kz) ( *E ' e iWt + c.c.

(2)

: 2A0 sin(kz) [9x cos(WRt) + c 2y sin(w t)]It

where A is the amplitude, k is the axial wavenumber (along the z axis),

w is the complex frequency consisting of the real frequency and the growth

rate, w = wR + ir, c characterizes the ellipticity of the polarization,

and x and _y are unit transverse vectors. The oscillator fields 6E and

6B are given by

E = 1 . i A sin(kz) (A + iE iit
c at C o ex y+C..

(3)
6B = V x A - ikA0 cos(kz) (E + i^y) e - 1(t + C.C.

In addition, a static uniform axial magnetic field is present,o = BoA

The fields given by Eq. (3) are appropriate for those in an oscillator

formed by two parallel plates of infinite extent in the transverse direc-

tion. They are also applicable to a general case of an oscillator con-

sisting of two concave boundaries, provided that Ao and k are appropriate

functions of x, y, and z and the small axial field components are included.

These modifications depend on the waist of the radiation field, ro, and

the Rayleigh length zo = wr 2 /2c and are negligible if the beam width and
0
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the electron Larmor radius are small compared to ro , and if the axial

interaction length is small compared to zo. Accordingly, under such

conditions the fields in Eq. (3) can be used with A and k constant.

The behavior of the field is governed by the wave equation,

v2  l 2 __ 4V 2 v A + I-- ( a --' + ,V 0 ) A = ( 4 )
c 5t2  --

where v is a real quantity representing losses. It will be shown later

that v = wR/Q, where Q is the quality factor of the resonator. Expressing

the current density as

J e - iUt + C.C., (5)

it is found that Eq. (4) together with Eq. (2) can be put in the form

L [(kc - w)- i(2r + v)RA( + i )

L (6)

j 4Tc a sin(kz)dz,

0

where L is the interaction length.

Before continuing, it is necessary to evaluate v in Eq. (6). This

is accomplished by integrating Poynting's theorem along the interaction

region,

L L

udz + Sz(z=L) - S (z=O) - E.J dz, (7)

0 0

7



where u is the radiation energy density and the z componeLt of Poynting's

vector S vanishes at z=O and has the value Sz = udz at z=L, by

exp(2rt), for the energy, thus

L L

(2r + w-) Judz : - E'J dz , (8)
0 0

and from a comparison with Eq. (6) it is seen that

V = W- R (9)Q.

The current density in Eq. (6) will be evaluated from the appropriate

moment of the distribution function, the latter obtained from the solution

of the Vlasov equation. Employing the expansion f = f(O) + f(l) of the

distribution function, f(O) describes the zero-order trajectories in the

external magnetic field and is therefore a function of the corresponding

constants of motion,

p2 =P2 +p
2

o 1tan-  (Y-) - z0

Pt, = z ' (10)

xg = x py

00
P

yg =y + X

which are, respectively, the transverse momentum, the azimuthal phase

angle relative to a fixed cyclotron helix, the parallel momentum, and the

8A



x and y locations of the guiding center, defined as functions of the

Cartesian components of position (x,y,z) and momentum (Px9 Pz) "

The nonrelativistic cyclotron frequency is 00 = eB0/m0c. Considering

Eq. (10) as a transformation from Cartesian to constant-of-motion phase

space, that is, defining g(O) = f(O) ang g(1) = f(l), where g(O) and

g (1) are functions of the variables defined in Eq. (10) as well as z and

t, the Vlasov equations can be written as

it ez : e + p x 6B g(O)+  o-Y)3z - -mo0C - -

Here the unperturbed distribution function is assumed independent of

e, x9 and yg. The relativistic factor y is defined as 2 = 1 +

(p, + p2)/(moc) 2.

Using Eqs. (3) and (10) and introducing the expansion

g(1) = (1)e-iwt + c.c, (12)

in Eq. (11), the first order linear homogeneous differential equation for

-0) can be integrated, yielding

-(1) 1 Ymo e Ymo ]
= -eAo  p0 e P l

I ~l+z -1 1lZ-
+ (l + E)e' [ i i2+ D

(l E)e io [e1&2-z -1lD - e1C 2+z -1 D] jg(0) . (13)
L '&2- ' 2+ -

The differential operators, D+ and D_, acting on g(O), and the relative

wavenumbers, Cl+ and &2+, are

9



D..~+ k (
- c aP - Ymoc (PLl Piap

(S? " yw)mo (14)

+ k + 0 0

(%o + yw)mo

E2+ :+ k + (0+-wm
Pt'

The constant of integration in Eq. (13) is such that (1) 0 at z=O,

corresponding to an unperturbed entering beam.

The perturbed distribution function, obtained in Eq. (13), can be used

to evaluate the Fourier component of the current density,

e- d p (15)

m0 '

Performing the integration over 0 in Eq. (15) gives

-= e2Aono Jdpj dpl, exp p, Pl"

x (ex + ey exp -i Pro---lz (1 + C) [Dl+ D]

- (x- t y) exp [i- D+ - E2+ D_ o

(16)

The beam density n0 has been extracted for convenience from the distribution

function, by defining nog0  2rg , where go is normalized to JPLdpIppgo=1.

Finally, multiplying I by sin(kz) and integrating over the length of inter-

action, yields the driving term required in Eq. (6),

10



L

J 4Trc S sin(kz) dz
0

4 e2 0 PL/

iIi ^ I +AonocId-L_1dty ---
I ^  - ^ ~ ( + [( e -i~ l -L - e-i~l+L-I)l Dl

-(L ei L-1 ei l+L- _-L+icI~ i~l+ i~l-

e )_ ei 2+L -ei 2 L L1+_x y '2+ [2- i2- +

L ei-2+L -1 + er2 L -l i

-Ci2+ t,2 - _ 22+ D_ go

(17)

where the boundary condition sin(kL) = 0 has been used to eliminate

terms similar to exp [i([,,+ - Fli)LI.

Equating Eqs. (6) and (17) yields a consistency condition between

wR, r and c. This is the linear dispersion relation, which includes the

positive and negative electron cyclotron interaction with both the for-

ward and backward traveling waves. However, in general only one of these

interactions is resonant, which we take throughout the remainder of this

paper to be with the forward wave. 30 Defining

(Q - yw)m0" ' +

l (18)

one obtains from Eq. (17),

i1



L

1 4Tc X sin(kz)dz
0

JidpA + c) iL+ +g1
4i eAonoC dpldp (ex+iy) (1 + [e Dg0 . (19)

Comparing this equation with Eq. (6), it is seen immediately that consis-

tency requires that e=l, that is, only a circular polarization is compatible

with the interaction. The dispersion relation now becomes

(R - k2c2) + iwR( 2r +

2 .
fdp~dp [2 112 sin2p + i2 D+g (20)

16 0 Pit,

where 2 = 41re 2 n/m and v is a complex quantity, defined in Eq. (18) and

depending on w = WR + ir.

In a number of interesting special cases only the real part PR of

p is of significance. These cases are: (i) the (linear) steady state,

r = 0, (ii) the conditions just above threshold, r - 0, and (iii) when the

beam is sufficiently weak, so that the imaginary part of p is negligible.

In such cases, separate equations can be obtained for the frequency and

growth rate,

(kc) 2 = m oP 2 R sin2 pR
.. mLcw. fdpdp1  . () D+go0 (P2 (21)

R R moLc Jd sdp,,R  (21)
wR(21 + (IR 1 2 D+90

Finally, for the special case of a monoenergetic beam, go = 6(p - p10 )

S(P - P11o)/Pio, integration over p and p,, gives

12



1-n2  2aj- o) Rn(vR)'
2 W o D n(22)

2r + 1 RQ(vR) (
WR Q

where the refractive index, n = kc/wR, has been introduced, the quantity

1R is obtained from Eq. (18) in terms of the beam quantities yo and P1o

and the dimensionless velocities a ro P/Yomoc and f30 = P /-Yom c
110 PI 0 , Io0 0

were used. The operator D and the functions Rn and R are

6n 110o(1-nBo) +l n 2 wRL  ]d
no WR

D~ n-2 B2  +'n
J- 0  c R 

2p - sin 211
R M ))Rn( (2pJ) (23)

RQ( s : ( )- 2 )4

To complete the formalism we note that for the fields of Eq. (3) the

total steady state field energy inside the interaction region, L, is
L

given by fudz = (wRAo/2c)2 L (1 + n2 )/w, hence the efficiency of con-
0

verting kinetic energy to radiation energy, per unit time, is

n9 1 + n2  ~Lo CeA 
2

) k-C-)(24)ri9
= 2yo(Yo- 1 ) i mJ D2RQ

0 0 110

We have thus completed the linear analysis of the interaction.

The results are represented by Eqs. (22) and (24) for a monoenergetic

beam and weak (or vanishing) growth-rate, as well as the general case

given by Eq. (20). Let us consider now the significance of these equations,

13



in the limiting cases n - 0 and n - 1. The first of these cases,

n - 0, corresponds to the gyrotron mechanism. Referring to Eq. (24),

the efficiency of the oscillator is proportional to the quantity

D R 2 0 ( s in jR + _I wR d /sin '\ 2 (25)

The first term in the above expression is always negative, and its

stabilizing effects are reduced if the ratio 3o/L2  is large. If this-L~O 0

ratio is large enough for this term to be omitted, a positive energy

conversion can be obtained if the derivative dRQ/dIRis positive. This

occurs in a number of intervals in the domain of y' the most prominer.t:i.

which is - ff < P R< 0, and the maximum of dRQ/dlPR= 0.54 is attained at

SR= - 1.3. Such negative values for iR correspond to wR > Qo/yo, hence

the wave frequency must exceed the relativistic electron gyrofrequency.

Let us now turn our attention to the interaction with luminous waves,

n - 1. in this case, the efficiency of the resonator, referring to

Eq. (24), is proportional to

DdRQ=[-2 o ( N (sinJR + dR d sin'R) (26)

This function is plotted in Fig. (2) for ,,o = 0.1 and (a) P:o = 0.7,

(b) a 0 = 0.425, and (c) 0 = 0.35. A number of interesting features

can be observed in Eq. (26). First it is noted that DIRQ (i.e., nr)

is an even function of t'R , therefore, contrary to the gyrotron mechanism,

the interaction with luminous waves does not depend on the sign of the

frequency mismatch, ' o = wR - o/Yo - kv O = - 2 wRv ,o/L. Instability

occurs if either of two conditions are satisfied. The first is

14
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0.5 \(a)
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0 0

-0. 5
0.5P 110  = 0.10

r (a) P10.L - 0.70VtC) (b) ,P.Lo  0.425
S(c)ho=035

-1.0o 1\ 1 1 o o1 __

2 4 6
NORMALIZED LENGTH, 1AR

Fig. 2 - The function DMJRQ(GIR), which is proportional to the linear efficiency, versus JR, which
is proportional to the resonator length, for n=1, 0i1o = 0.1 and (a) 0jo = 0.70, (b) a,. = 0.425, and
(c) io 0.35.
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2 > 26c (1 - B ) , (27)
1.0 0

and OR 0 O. If Eq. (27) is satisfied, the first term in Eq. (26) is

positive, while the second term vanishes. Thus, contrary to the gyrotron

mechanism, a positive efficiency can occur for Aw = 0, provided that

Eq. (27) is satisfied. If Eq. (27) is well satisfied, the first term

dominates up to the point 'DR' : 1.166, where tanPR = 2 OR and therefore

- R dRQ/duR = RQ. Additional regions of instability occur when the second

term is positive, provided that Eq. (27) is not too strongly violated.

These regions cover the intervals j7 < IVRI < a. - 1/a., where a. = (2j+I)
ir/2, j=1,2,3..., and the upper limit is a good approximation to the solu-

tion of tanPR = PR" In these regions, OR dRQ/djR reaches the maximum

values 1/(0 + bj) at [ RI : b. - /(/2 b.), where b. = (4j + 1)7/4, and

j is a positive integer.

16



11. NONLINEAR THEORY

The linear analysis established that the cyclotron interaction

with plane waves results in instability, even for luminous waves, n-1.

In this section the nonlinear equations of motion are obtained, both on

the fast and slow spatial scales. These equations are investigated and

constants of the motion are obtained. The application of these invari-

ants permits the analytical study of the conditions for energy depletion,

the trajectories in phase space and the exact scaling relations for the

efficiency. A single first-order differential equation is found to be

sufficient to describe the evolution of the particles.

The nonlinear equations of motion are studied under the action of

a uniform axial magnetic field, 0 = B z , specified by its nonrelativistic

electron gyrofrequency, %o = eBo/mc, and a steady state wave, whose vector

potential is

A Ao [xsin(kz- wt + o)+ e y cos(kz- t + o) (28)

Only the forward wave is included in Eq. (28). Adding to Eq. (28) a

similar expression, with k - -k and o + ,' recovers Eq. (2). However,

the backward wave has been omitted, since resonance with the forward

component is assumed.

Although the natural independent variable for particle motion is

time, it is convenient for oscillator configurations to adopt a Lagrangian

representation, expressing the equations of motion in terms of the axial

distance z. Since dt = dz/v z, the phase of the wave as a function of z

is given by

17



Z

ip(z) =k f!(I - l (z' )) dz' + (29)

0

where Bz  v zlc. The equations of motion become

d_(~x Ao cos F- E- _ z Qo '

d y -E A sin p ,+-- 'x
oz Y dz c '

d_- (Y ) k -k cosW- -~- !y i n (30)

d Y -k L- cosp -e - z sin,).

d _ x d y
dz z

where Ao  eA /mc2, x = vx/c, y= vylc and y2  (1 - a' a2 Bz- .
0 ' y ' X y Z

Note that the first four of Eq. (30) are interrelated by the definition

of -y. In addition, the equations for x and y can be integrated, in con-

junction with the equations for y y and y~x, respectively, to yield the

constants of the motion

Ix =y x - A sin, +-y , i

y = Yy - CA0 cos- --0 x-

These integrals can be used to assess the assumption of transverse uni-

formity implied by Eq. (28).

18



An additional invariant can be obtained from Eq. (30) by noting the

equations for yBz and y. This invariant 30 is

I 1 = y(n - 6z) , (31)

and its invariance is associated with the plane wave nature of the fields.

When n=O, this invariant describes the conservation of axial momentum in

12
the cut-off frame of the gyrotron. If n > 1, 1 is proportional to the

conserved particle energy in the wave frame. 33 '
34 The significance of

this invariant is that it indicates the possibility of complete energy

depletion, y=l, if the initial particle properties are such that Il = n.

Denoting these initial properties with a subscript zero, the necessary

condition for complete energy depletion is

n
Yo n- (32)n-zo

Introducing the definition of yO, Eq. (32) can be written as

o o ( - zo n ) (33)

where 2 = B2 + a o. An interesting observation is that when n=l,
.L 0 XO yo

Eq. (33) reproduces the condition for the vanishing of the first term in

the linear dispersion relation (see Eq. (26)). It should be noted that

Eq. (32) or (33) represents only a necessary condition for complete energy

depletion. The sufficient condition depends on whether the state of

complete energy depletion is accessible by the particles. We will return

to this point later.

L 
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The introduction of the inva.-1,nts reduces the s-ster of Eq. 00)

formally to two coupled integro-differential equations for x and

Following the usual procedure, we define

'x = sin , :.,

(34)

Y, cos( +

where C, , and x are functions of z varying slowly over a cyclotron
-A-

period. Substituting Eq. (34) into Eq. (30) results in trigonometric

functions with arguments X and 2. -- X. The 2; + , terms phase-mix in

a few wavelengths, hence the slow spatial scale equations are

d --z l- k (1 - 1-M sin,,

z

d 1+
k (A) -' n,. ,3

dz

dz -k I- (1 - + 1-c k ( - A cos,.

L- 11-n 2 y n~K 0

d 1+c k -L A
nBz

The above equations are interrelated by the definition of y and

the invariance of 1. In addition, Eq. (35) possesses and additional

invariant, given by

2

12= (ye) - (y1) (l+c)A o cos X - 2 L- ny . (36)
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It can be seen that when n=0, c=0 and 6z * 0, the combination 12 + I, + 1

+ (Q0 /W)
2 gives the corresponding gyrotron type invariant in the cut-off

12

frame. Also, when n > !, then 12 transforms in the wave frame to the

corresponding second invariant. 33'34 Furthermore, using the fast length

scale Eq. (30), the derivative of 12 is

dz (l-E) kAo  n- z ( I - )] y.sin(2.' +

1 l+E n(37)+(1 -~z !+ ~-Asi
+ Fz T AoSin2

Hence 12 is invariant also on the fast lenoth scale. provided c=1.

The determination of the two invariants, I1 and I,, allows us to

study the trajectories in phase space. The appropriate coordinates for

the two-dimensional representation are X and y. Using the definition of

y and the invariance of I1 and 1, to eliminate z and g in terms of y and

X (and the initial conditions, denoted by subscript zero), we find that

(1-n2 ) (y--y )2 + 2(AwO/W) Y0 (y-yo) + (l+c) Aoy ° -Y o Co

cosx= (l+c) A0 [(l-n2) (yo)2 + 2(l-n8zo) yo (y-yo) + (yo6 B)2]2

(38)

where Aw° =W - /Y - kvzo

We are primarily interested in the case of luminous waves, n-l.

In this case, Eq. (38) takes on a rather simple form. The resultant equa-

tion is

I i-

qCw - q 2cosx = const , (39)
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where Cw is a constant proportional to the ratio of the initial fre-

quency mismatch and the wave amplitude,

Yoo w - kvzo -oIyo
C = - (40)Cw = lz w(I+E:-o,(

and q is a linear function of y,

1 -
q = 2 ,74 (Y-yo) + 1. (41)

It can be seen that q=l corresponds to the initial condition, y:yos

hence the constant in Eq. (39) is equal to C w - cosXo. In addition,

depletion of the perpendicular or of the parallel energy, correspond to

q=O and q=C d respectively, where

2B (l-z)
Cd =1 ZO ZO , (42)

is a constant characterizing the anisotropy of the distribution. When

Cd=O; complete depletion of the energy is possible, see Eq. (33).

For a positive frequency mismatch, that is, when Cw > 0, the phase

space trajectories, obtained from Eq. (39), are shown schematically in

Fig. (3). The arrows indicate the direction of particle motion. Both

open and closed trajectories are possible in principle. The separatrix

between these two families of curves is shown by the broken bell-shaped

curve, described by the equation qC2 - cos 2x = 0 and defined only in thew
interval iXi < w/2. The largest value of q on the separatrix is at X=O,

q=Cw2. The vortex, or O-point, of the closed trajectories is at x=O,

wq = (2Cw)-22
22
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N

m-y (b)i

RELATIVE PHASE ANGLE, X
Fig. 3 - Trajectories in phase space coordinates q, x(. The dashed curve is the separatrix. The dashed

straight lines give the initial values, q=1, for (a) Cu,> 1, (b) 0.5 < Kw 1, and (c) 0 < Cw<0.5.
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For the curves in Fig. (3) to represent actual electron trajectories,

they must intersect the initial condition line, qo=l. The location of

this line can be obtained in relation to the value of Cw. If Cw > 1,

then the peak of the separatrix lies below the line qo=l (line (a)), and

all particles are untrapped. Trapped particles exist if Cw < 1, but

always more than half of the initial phase angles X0 correspond to un-

trapped particles. Lines (b) and (c) in Fig. (3) describe the initial

conditions, qo=l, if 0.5 < Cw < 1 and 0 < Cw < 0.5, that is, above and

below the vortex, respectively.

When Cw < 0, the phase space trajectories are obtained from those

in Fig. (3) by a reflection about the line X=7/2. The trajectories for

Cw > 0 and C w < 0 are shown in Figs. 4(a) and (b). Because of this

symmetry, any particle, trapped or untrapped, in Fig. 4(a) has a

corresponding particle in Fig. 4(b), which executes identical changes in

q (or y). This recovers and extends to the nonlinear regime the linear

result that the evolution is independent of the sign of the frequency

mismatch (or C w). The phase plot in Fig. 4(c) corresponds to exact

synchronism, Cw=O. In this case the separatrix reduces to the lines

X=/2 and X=-7/ 2 and all particles are semi-trapped. In this case the

relative phase X is bounded, while the energy, or q, is bounded only from

below. Whether the initial evolution in this case corresponds to net

particle energy loss or gain depends on whether Cd - 0 or Cd < 0, as has

been shown in linear theory. However, it is clear from Fig. 4(c) that

eventually all particles, regardless of their initial phase, will gain

energy and will be tightly bunched in X (but not in energy), about

X=-7/ 2, Accordingly, this configuration can be the basis for a particle

24

IE



Cw>O Cw<0 CW=0
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0 00w

RELATIVE PHASE ANGLE, X

Fig. 4 - Comparison of phase space trajectories when (a) Cw > 0, (b) Cw < 0, and (c) C,, 0 .
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accelerator. The details of such an application are currently under

study and will be discussed in a separate publication.

The determination of the two invariants, II and 12, which connect

the three independent momentum components, makes possible the description

of the electron evolution in terms of only one quantity, say q (i.e.,

the energy). When the index of refraction is unity, i.e., n=l, the

corresponding differential equation is

9= - sgn(sinx) [q - (qCw - Cw + cosX )2](d q-Cd  (3

where sgn is the sign function and the reduced length c is defined as

= 2(I+ / (l- z\ 2
2( )A I Z A k(.z-z o ) (44)

Y06J.0 ._i 1 0

It can be seen that Eq. (43) is immediately integrable. The inversion

of the resulting expression is straightforward only when Cw=0 , Cd < O.

This case is, however, uninteresting, since it corresponds to energy gain

by the electrons.

In spite of the difficulties associated with the inversion of the

integral of Eq. (43), useful information can still be obtained. It is

noted that the solution of Eq. (43) has the form

q = q( max; X0 Cw9 Cd) ' (45)

where max is the value of c corresponding to the length L of the inter-

action region in Eq. (44). In our Lagrangian representation, the

efficiency is given by n = -e-y-yo > / (yo-l), hence

26
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n( max, Cw I Cd , C n )  Cnr (1-<q> ,(46)

where the angular brackets denote an ensemble average over X and the

coefficient C is defined by

2
Y0 . (47)

n  
2(Y -I) (l-Qz(7

0 z

The efficiency, therefore, does not depend on the seven parameters k,A,c,

L, zo' o' Qo arbitrarily but only on cmax' Cw' Cd and C . Further

simplifications arise by the fact that C is just a multiplier of the

efficiency expression. Large values of Cn are possible for a wide range

of beam properties, as can be seen in Fig. (5). In this figure contour

plots, Cn = const, are presented. In addition, Fig. (6) presents contour

plots of Cd = const.

Before proceeding with the presentation of the results for the non-

linear efficiency, it is worthwhile to rewrite the linear efficiency,

Eq. (24), in terms of the variables defined above. We use the definitions

of Cd, Cw, C and note from the definition of C that it is related to Po

by CwCmax = - 2(l-Cd)wo, where wo is defined in Eq. (18) in terms of the

initial values. Then from Eq. (24) the expression for the linear effi-

ciency is obtained,

C _ d  (sino2

n2 ) 2o + ° d (48)
w lC) d 10 ~ 0 o

This expression has all the features expected from Eq. (46), since it

involves a dependence on max (through 1j ), as well as Cw , Cd and Cn .
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Fig. 5 - Contour plots for the efficiency coefficient C7vs. o3zo 010, the normalized transverse
and axial electron velocities.
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Fig. 6 - Contour plots for the anisotropy constant Cd vs. 0, and 01,
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Let us proceed now to solve for the nonlinear efficiency. Two

numerical approaches are available, the first approach based on a

numerical integration of tne complete set of Eq. (30) to obtain the

Lagrangian particle trajectories. The second approach requires the

integration of Eq. (43) only. Both approaches have been used. In all

cases, the agreement has been excellent. Equally excellent has been the

agreement of the results with linear theory, when a sufficiently small

amplitude or short interaction length has been employed in the simulations.

The dependence of the normalized efficiency n/C,= l-Kq>on the re-

duced distance w0is given by the solid curve in Fig. (7) for a distribu-

tion characterized by C d =-2.5 and a wave characterized by Cw = 1.4.

Comparing this curve with linear theory has shown that initially, up to

130=1.6, the evolution is essentially linear. Beyond that point, the

efficiency undergoes oscillations in vi.~, reminiscent of the corresponding

linear behavior, except that these nonlinear oscillations do not diverge,

while the linear result of Eq. (48) predicted divergent oscillations.

The location of the relative maxima of the efficiency vs. ji0is however,

in strikingly good agreement with linear theory. The first maximum is

at 1.103.7, and the corresponding optimized nonlinear efficiency is

n/Cn, 0.164, approximately one half of the linear value fq /Cn 0.300.

For these parameters, subsequent maxima correspond to negative values

for the efficiency. The dashed curve corresponds to the values Cd= -2.5

and C w = 2.7. This case will be discussed later.

The contour plots of Fig. (8) show the normalized nonlinear

efficiency, 1 - <q>, at the first maximum (the one near 1i=3.7), for

various values of the parameters C d and Cw. As can be seen from the

Figure, large normnalized efficiencies, e.g., 1 < q> 0.15, are possible
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Fig. 7 - Spatial evolution of the normalized efficiency 1-<q> = ?/C, for Cd = -2.5 and

Cw = 1.4 (solid curve), as well as for Cd = -2.5 and Cw = 2.7 (dashed curve).
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Fig. 8 - Contour plots of the normalized efficiency 1-<q> vs. the parameters Cd and C,
for an interaction length corresponding to the first efficiency maximum (co - 3.7). The
dotted curve gives the value of Cw for maximum efficiency at any value of Cd.
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over a wide range of beam distributions and ratios of frequency mismatch

to radiation field amplitude. In addition, the dotted line in Fig. (8)

gives the value of C w required for optimal operation at a given value of

Cd. For such values of Cv,, the normalized efficiency as a function of

C d is given in Fig. (9). The overall maximum, 1 -< q> = 0.165, is

obtained for Cd = - 2.2, Cw = 1.5.

The results presented so far apply to the first maximum of the non~-

linear efficiency, at a point near po= 3.7. This is not meant

to imply that the first efficiency maximum is always dominant. For

example, referring again to Fig. (7), it can be seen that increasing the

value of CW2 causes the amplitude of the first efficiency maximum to

decrease, and that of subsequent maxima to increase. When the point

C= 2.7 is reached (dashed curve), for which 1 -<q> maximizes near

10=6.8, the normalized nonlinear efficiency is equal to 1 -<q> =0.143.

For even higher values of CW9 it is the third, fourth, etc. efficiency

maximum that dominates. The same behavior is observed if - C d is

increased, keeping Cw constant. Contour plots for the efficiency at the

second and subsequent maxima are very similar to those of Fig. (8),

except that the curves are shifted to slightly higher values of C wand

-Cd.

33



0.2

N C"

<C-

.... I.,

LL
0

0 -2 -4
BEAM DISTRIBUTION CONSTANT, Cd

Fig. 9 - Optimal normalized efficiency (i.e., along the dotted curve of Fig. (8)), vs. Cd.
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IV. DISCUSSION

In the previous two Sections, we have considered the linear and

nonlinear electron cyclotron interaction with (primarily) luminous

waves. From that analysis, results have been obtained regarding the

stability of these waves and the nonlinear steady-state performance.

In this Section, we conclude with various aspects concerning the

practical feasibility of a device based on this analysis. We show that

this interaction has weak temperature requirements (6zo /zo << 1) and

that excellent mode selection can be achieved. One example of a cyclo-

tron maser is given and the use of this interaction as a free-electron

laser is discussed. Finally, the possibility of improving the nonlinear

efficiency (up to n =0.60) is discussed.

(a) Temperature requirements.

Let us consider first the effects associated with a thermal

spread, 6 zo and 6y0 , of the beam electrons. The sharpness of the

resonance in both linear and nonlinear theory is characterized by the

parameter p 0, which can be written as

=11 0 = TL + , (49)

where X = 2Tr/k is the radiation wavelength. From the dependence of the

efficiency on p0o it is seen that 161 0 << 7/4 is required. With regard

to the parallel velocity, this translates to the requirement

68zo < 1 kcB 0  (50)
zo 4 L 0/Oy 050)
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For conventional cyclotron maser operation, w > Q/o + kc z and this require-

ment gives 6 zo/ zo << /4L, prohibiting15 operation in a system longer than

a few wavelengths. However, when w = kc, the symmetry about po = 0 allows a

choice of operating point with w < Q/¥o + kC zo" In particular, if the

wave is suppressed (e.g., by a polygonal ray-path in a multi-mirror resonator)

and the choice is made that

1 IT 1) ,(51)

where a local maximum of the efficiency is located, the requirement is

simply

6B zo
ZO<< . (52)

For the same operation, the requirement for 6yo is

6Y 0  1-Y << X_ (53)

YO 4 6zo L 'Yo

which may be more restrictive.

As regards the other significant parameters of the interaction, the

requirement 16Cdl << 1 - Cd gives a condition supplementary to Eq. (53),

6Y0Y << (-yo L)2 (4

while the condition on the parallel velocity is less restrictive than (52).

Similarly, the condition 16CwI << Cw is satisfied if the above conditions

are satisfied, except that in the highly relativistic limit, 1zo - 1, an

additional condition is imposed, viz.
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zo 1 zo (55)

(b) Mode Selectivity.

Transverse and longitudinal mode selectivity can be dealt

separately. We will not deal in any detail with the former. It is

expected that by an appropriate design of the mirrors, only the lowest

order transverse mode will be intercepted, while the higher order modes

will suffer from diffraction losses.

As far as the longitudinal modes are concerned, we first seek to

determine the number of modes that fill the positive gain curve segment,

at whose peak the desired longitudinal mode is located. Since the

half-width of the gain curve is I6pI <ir/4, it can be seen from Eq. (49)

that the number RS of longitudinal mode pairs (in addition to the mode

at which operation is desired) within the positive gain segment is

R B 70  (56)
zo

Thus, no competing axial modes are present if zo < 2/3. On the other

hand, many modes will be excited in the case of a highly relativistic

electron beam with .zo I.

An additional point to be considered is whether the operation of

the device at a certain efficiency maximum is accompanied by the presence

of a different longitudinal mode which might correspond to a value of

10 lying within a different positive segment of the gain curve. This

question is particularly important when there are many wavelengths within

the resonator. In that case, the operation is seen from Eq. (51) to
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require a large value of poand the broken line in Fig. (7) indicates

that more than one gain segment corresponds to positive gain. Such

undesired modes can be suppressed by the introduction of distributed

feedback. Inherent means for mode selection are also available. Thus,

it can be seen from Eq. (49) that if the choice

1 ( 73zo 2j + (57

is made, where j is an integer, then the closest potentially unstable

mode falls at the next (2j-l)-th maximum of the gain curve. If j is not

too small, then it is expected that this maximum may correspond to negia-

tive gain, thus guaranteeing the absence of any competing modes.

(c) Example of cyclotron maser operation.

Before proceeding, it is necessary to present a numerical

example, in order to demonstrate how our results can be applied to a

particular design. We consider an interaction at the third maximum

of the gain curve. As can be seen from Eq. (51), temperature effects

are reduced by choosing a system length equal to 3X. The normalized

efficiency at the third maximum is n/C = -.156, for Cd = - 2.9,

Cw = + 3.0 and io= + 10.1. A value 2 o 0.143 (=1/7) guarantees the

absence of any competing modes (see Eq. (57)) and Eq. (53) gives the

condition 6-y/y N < 1.2%0. From the definition of Cd' Eq. (42) (or, from

Fig. (6)), it can be found that 1~o =0.25, hence o=1.0433 correspond-

ing to a beam energy of 22.2 keV. Then from the definition of C 9

Eq. (47), or, from Fig. (5), it is found that C n=0.88. Therefore,

the nonlinear efficiency is n= 0.137. For the above values and the

definition of Cw (Eq. (40)), the normalized vector potential of the
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radiation field, assuming linear polarization, has the value

Ao = 1.55 x 10-2. The external magnetic field gives a gyrofrequency

satisfying Qo/w = 1.055 and the frequency mismatch is Awo/W

= (W - E/Yo - kv )/w = - 0.154. Finally, by choosing a wavelength

= 2 mm, this example requires an external magnetic field of Bo = 56.5

kG for a radiation field amplitude of E0 = 833 sV/cm (= 250 kV/cm)

and frequency w = 0.942 x 1012 sec - I (= 150 GHz). For an incident beam

current of 20 A, the radiated power is 61 kW.

(d) Free-electron-laser type operation.

An interesting variant to the study presented here is the

possibility of using the interaction for the excitation of waves with
35

a frequency shifted significantly above the gyrofrequency. It can

be seen from the definition of Cw that the frequency is given by

W = - zo + Cw l+ eE (58)
YOO- ZO) w Y _Lomc

where E0 
= wA0/c is the amplitude of the electric component of the radia-

tion field. The operating frequency is essentially given by the first

term in Eq. (58). Defining the axial relativistic factor, yzo=(l-8_2) -
2,

the operating frequency is accurately given by

W (l + o)Y2 0 (59)zo zo

and bears the same form as the free-electron laser frequency, 
36,37

employing a magnetic wiggler.
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Since the relativistic gyrofrequency depends on the mass factor

YO the actual quantity that multiplies the nonrelativistic gyrofrequency
to give the operating frequency is I-l, where I = Yo(1-azo) is the first

invariant. For high operating frequencies, it is required that I >> 1.

This requirement, together with the desire that C be not too much less

than unity (in order to achieve adequate efficiencies) requires that

-Cd << 1. Thus, as can be seen from Fig. (9), efficiencies of the order

of 10% are to be expected, For example, w/Qo = 10 requires Il = 0.1.

Taking yo = 50, gives zo = 0.998 and a o = 0.06. Then Cd = -0.11, giving

n/Cn = 0.102, and C. = 0.917, and the result is an efficiency n = 9.36%.

(of course, higher efficiencies can be obtained by adopting efficiency

enhancement schemes, as discussed in IV(e) below.) In this example, it

is required that Cw = 3.6 and Vo = 3.6. Choosing a wavelength of X=0.2 mm

(f = 1.5 THz) and a system length L = Im = 5000 X, it is found that an

external magnetic field of strength Bo = 47.5 kGs is needed. Furthermore,

assuming a beam current of 10 A, the radiated power is equal to Prad = 23.4

MW.

(e) Efficiency enhancement.

The nonlinear analysis of Sec. III shows that the performance

of an oscillator operating with luminous waves is limited to efficiencies

n E16%. Here we will outline briefly a scheme which can improve the

performance of the interaction dramatically, We introduce a two-stage

oscillator configuration, in which the first stage (the prebuncher) acts

to pre-bunch the particles in their relative angle X, without significantly

changing particle momentum. The second stage (the converter) converts

the kinetic energy of the bunch to radiation energy. A 100% conversion
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is possible, if the bunch is perfect and Cd 0.

In the prebuncher we require a combination of a "large" frequency

mismatch and "small" radiation field amplitude, such that jCw 1 >> 1.

In this stage the electrons are highly untrapped and only negligible

energy exchange occurs. To first order X is

~(l) = + -cosXo) (60)

where Cd = 0 has been assumed. For X0 uniformly distributed in the

interval (0, 2fr), Eq. (60) describes the formation of a bunch.

The extraction of particle energy occurs in the converter. From the

discussion of Sec. III (see also Fig. (3)), it is recalled that a particle

on the separatrix eventually loses all its kinetic energy, if Cd = 0, as

is assumed here. Since the bunch has a spread in x rather than in q, it

is necessary to arrange the converter parameters so that Cw2 = 1. With

an appropriate choice of Cwl, the bunch will be centered at the peak of

the separatrix. The center of the bunch will thus be able to convert all

its energy to radiation energy, by choosing the appropriate length for

the converter section. Examining the bunch coherence from Eq. (60) it can

be estimated that efficiencies of the order of 60% are attainable.

As an example of a two-stage oscillator we consider the case

Cwl = 7.5, Cd = 0, with a discontinuity in the radiation field amplitude,

Cw2 = 1.0, for > Cl. The evolution of the efficiency for this case is

shown in Fig. (10). The oscillatory curve gives the evolution when the

first oscillator is sufficiently long, Cl -
. However, if the location

of the discontinuity is appropriately chosen, the ensuing evolution is
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Fig. 10 - Efficiency enhancement in a two-stage oscillator configuration. The oscillatory
curve gives the nonlinear normalized efficiency vs. normalized distance for Cw1 = 7.5 and
Cd 0 in a single resonator. The introduction of a second resonator with Cw 2 = 1.0 at
= shown by the small circles, improves the overall efficiency. The cases shown corre-

spond to (a) 1 = 0.90, (b) 1 = 1.72, and (c) 1 = 2.50.
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characterized by substantially increased efficiency. Thus, for the

choices cl = 0.90, 1.72, and 2.50, shown in the figure by the small

circles, the evolution of the efficiency in the second oscillator, where

Cw2 = 1.0, is shown by the curves (a), (b), and (c). This procedure

yields the optimal values of the efficiency n = 0.15, 0.28, and 0.35 at

the positions 2 - 1.5, 2.3, and 3.1, respectively. This clearly demon-

strates the principle of efficiency enhancement in a two-stage oscillator.
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